Кулинарный сайт - One142

Использование полезных микроорганизмов. Роль микроорганизмов в технологии пищевых производств Микробиологическая очистка сточных вод

Из более чем 100 тыс. известных микроорганизмов в промышленности применяются всего несколько сотен видов, так как промышленный штамм должен отвечать ряду строгих требований:

1) расти на дешевых субстратах;

2) обладать высокой скоростью роста или давать высокий выход продукта за короткое время;

3) проявлять синтетическую активность в сторону желаемого про-дукта; образование побочных продуктов должно быть низким;

4) быть стабильным в отношении продуктивности и к требованиям условий культивирования;

5) быть устойчивым к фаговым и другим типам инфекций;

6) быть безвредным для людей и окружающей среды;

7) желательны термофильные, ацидофильные (или алкофильные) штаммы, поскольку с ними легче поддерживать стерильность в производстве;

8) интерес представляют анаэробные штаммы, так как аэробные создают трудности при культивировании – требуют аэрирования;

9) образуемый продукт должен иметь экономическую ценность и легко выделяться.

На практике применяются штаммы четырех групп микроорганизмов:

– дрожжи;

– мицелиальные грибы (плесени);

– бактерии;

– аскомицеты.

Термин «дрожжи» в строгом смысле не имеет таксономического значения. Это одноклеточные эукариоты, относящиеся к трем классам: Ascomycetes, Basidiomycetes, Deuteromycetes.

К аскомицетам относят, прежде всего, Saccharomyces cerevisiae, определенные штаммы которого используются в пивоварении, виноделии, производстве хлеба, этилового спирта.

Аскомицеты Saccharomyces lipolytica деградируют углеводороды нефти и употребляются для получения белковой массы.

Дейтеромицет Candida utilis используют как источник белка и витаминов и выращивают на непищевом сырье: сульфитных щелоках, гидролизатах древесины и жидких углеводородах.

Дейтеромицет Trichosporon cutaneum окисляет многие органические соединения, в том числе токсичные (например, фенол), и используется при переработке стоков.

Мицелиальные грибыиспользуют:

– в получении органических кислот: лимонной (Aspergillus niger), глюконовой (Aspergillus niger), итаконовой (Aspergillus terreus), фурмаровой (Rhizopus chrysogenum);

– в получении антибиотиков (пенициллина и цефаллоспорина);

– в производстве специальных видов сыров: камамбера (Penicillium camamberti), рокфора (Penicillium roqueforti);

– вызывают гидролиз в твёрдых средах: в рисовом крахмале при получении сакэ, в соевых бобах при получении темпеха, мисо.

Полезные бактерии относятся к эубактериям.

Промышленное применение с давних времен имеют молочнокислые бактерии родов Lactobacillus, Leuconostoc, Lactococcus.

Уксуснокисные бактерии родов Acetobater, Gluconobacter превращают этанол в уксусную кислоту.

Бактерии рода Bacillus используются для производства вредных для насекомых токсинов, а также для синтеза антибиотиков и аминокислот.

Бактерии рода Corynebacterium используются для производства аминокислот.

Из актиномицетов наиболее представительными являются рода Streptomyces и Micromonospora, используемые в качестве продуцентов антибиотиков. При росте на твердых средах актиномицеты образуют тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор.

В настоящее время с помощью микроорганизмов синтезируют следующие соединения:

– алкалоиды,

– аминокислоты,

– антибиотики,

– антиметаболиты,

– антиоксиданты,

– белки,

– витамины,

– гербициды,

– ингибиторы ферментов,

– инсектициды,

– ионофоры,

– коферменты,

– липиды,

– нуклеиновые кислоты,

– нуклеотиды и нуклеозиды,

– окислители,

– органические кислоты,

– пигменты,

– поверхностно-активные вещества,

– полисахариды,

– противоглистные агенты,

– противоопухолевые агенты,

– растворители,

– ростовые гормоны растений,

– сахара,

– стерины и превращенные вещества,

– факторы транспорта железа,

– фармакологические вещества,

– ферменты,

– эмульгаторы.

2 ПРОИЗВОДСТВО БЕЛКОВ ОДНОКЛЕТОЧНЫХ

ОРГАНИЗМОВ

^

2.1 Целесообразность использования микроорганизмов для

производства белка

В соответствии с нормами питания человек должен ежедневно получать с пищей от 60 до 120 г полноценного белка.

Для поддержания жизненных функций организма, построения клеток и тканей необходим постоянный синтез различных белковых соединений. Если растения и большинство микроорганизмов способны синтезировать все аминокислоты из углекислого газа, воды, аммиака и минеральных солей, то человек и животные не могут синтезировать некоторые аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин). Эти аминокислоты называются незаменимыми. Они должны поступать с пищей. Их недостаток вызывает тяжелые заболевания человека и понижает продуктивность сельскохозяйственных животных.

В настоящее время мировой дефицит белка составляет около 15 млн.т. Наиболее перспективен микробиологический синтез. Если для крупного рогатого скота требуется 2 месяца для удвоения белковой массы, для свиней – 1,5 месяца, для цыплят – 1 месяц, то для бактерий и дрожжей – от 1 до 6 часов. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год.

Рассмотрим пример: время удвоения кишечной палочки составляет 20 мин, тогда через 20 мин из одной клетки образуется две дочерних, через 40 мин – четыре «внучки», через 60 мин – восемь «правнучек», через 80 мин – 16 «праправнучек». Через 10 ч 40 мин из одной бактерии будет образовано свыше 6 млрд. бактерий, что соответствует населению Земли, а через 44 ч из одной бактерии массой 1 10 -12 г образуется биомасса в количестве 6 10 24 г, что соответствует массе Земли.

Использование различных микроорганизмов в качестве источников белка и витаминов обусловлено следующими факторами:

А) возможностью использования для культивирования микроорганизмов разнообразных химических соединений, в том числе отходов производств;

Б) относительно несложной технологией производства микроорганизмов, которое может осуществляться круглогодично; возможностью его автоматизации;

В) высоким содержанием белка (до 60…70 %) и витаминов, а также углеводов, липидов в микробиальных препаратах;

Г) повышенным содержанием незаменимых аминокислот по сравнению с растительными белками;

Д) возможностью направленного генетического влияния на химический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта.

Для промышленного производства пищевых продуктов на основе микроорганизмов необходимы тщательные медико-биологические исследования. Такие продукты должны пройти всестороннюю проверку для выявления канцерогенного, мутагенного, эмбриотропного действия на организм человека и животных. Токсикологические исследования, усвояемость продуктов микробного синтеза – основные критерии целесообразности технологии их производства.

Для получения белков используются дрожжи, бактерии, водоросли и мицелиальные грибы.

Преимуществом дрожжей перед другими микроорганизмами является их технологичность: устойчивость к инфекциям, легкость отделения от среды благодаря крупным размерам клеток. Они способны накапливать до60 % белка, богатого лизином, треонином, валином и лейцином (этих аминокислот мало в растительных кормах). Массовая доля нуклеиновых кислот составляет до 10 %, что вредно действует на организм. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые являются причиной мочекаменной болезни, остеохондроза и других заболеваний. Оптимальная норма добавок дрожжевой массы в корм сельскохозяйственных животных составляет от 5 до 10 % от сухих веществ. Дрожжи применяются для пищевых и кормовых целей.

Преимуществами бактерий является высокая скорость роста и способность синтезировать до 80 % белка. Полученный белок содержит много дефицитных аминокислот: метионина и цистеина. Недостатками являются маленькие размеры клеток и низкая их концентрация в культуральной среде, что затрудняет процесс выделения. В некоторых бактериальных липидах могут содержаться токсины. Массовая доля нуклеиновых кислот до 16 %. Используются только для кормовых целей.

Преимуществами водорослей являются высокое содержание полноценного по аминокислотному составу белка, накапливающегося в количестве 65 %, легкое выделение водорослей из культуральной среды, низкое содержание нуклеиновых кислот – 4 % (для сравнения – у высших растений 1…2 %). Водоросли используются для пищевых и кормовых целей.

Мицелиальные грибы традиционно используются в качестве пищевого продукта в странах Африки, в Индии, Индонезии, Китае и др. Накапливают до 50 % белка, по аминокислотному составу приближающегося к белку животного происхождения, богаты витаминами группы В. Клеточные стенки тонкие и легко перевариваются в желудочно-кишечном тракте животных. Массовая доля нуклеиновых кислот составляет 2,5 %.

С 1985 г микробиальный белок используется в пищевой промышленности для изготовления различных продуктов и полуфабрикатов.

В производстве пищевых продуктов рассматриваются три основные формы использования микробного белка:

1) цельная масса (без разрушения клеточных стенок);

2) частично очищенная биомасса (предусматривается разрушение клеточных стенок и удаление нежелательных компонентов);

3) выделенные из биомассы белки (изоляты).

ВОЗ (Всемирная организация здравоохранения) сделала заключение, что белок микроорганизмов можно использовать в продуктах питания, но допустимое количество нуклеиновых кислот, вводимых вместе с белком в диету взрослого человека не должно превышать 2 г в сутки. Введение микробиального белка не вызывает отрицательных последствий, но встречается проявление аллергических реакций, желудочные заболевания и т.д.


Микроорганизмы и продукты их жизнедеятельность в настоящее время широко используется в промышленности, сельском хозяйстве, медицине.

История применения микроорганизмов

Еще за 1000 лет до нашей эры римляне, финикийцы и люди других ранних цивилизаций извлекали медь из рудничных вод или вод, просочившихся сквозь рудные тела. В XVII в. валлийцы в Англии (графство Уэльс) и в XVIII в. испанцы на месторождении Рио-Тинто применяли такой процесс «выщелачивания» для получения меди из содержащих ее минералов. Эти.древние горняки и не подозревали, что в подобных процессах экстракции металлов активную роль играли бактерии. В настоящее время этот процесс, известный как бактериальное выщелачивание, применяется в широких масштабах во всем мире для извлечения меди из бедных руд, содержащих этот и другие ценные металлы в незначительных количествах. Биологическое выщелачивание применяется также (правда, менее широко) для высвобождения урана. Проведены многочисленные исследования природы организмов, участвующих в процессах выщелачивания металлов, их биохимических свойств и возможностей применения в данной области. Результаты этих исследований показывают, в частности, что бактериальное выщелачивание может широко использоваться в горнодобывающей промышленности и, по всей видимости, сможет полностью удовлетворить потребности в энергосберегающих, не оказывающих вредного влияния на окружающую среду технологиях.

Несколько менее известно, но столь же важно использование микроорганизмов в горнодобывающей промышленности для извлечения металлов из растворов. Некоторые прогрессивные технологии уже включают биологические процессы для получения металлов в растворенном состоянии или в виде твердых частиц «из моечных вод, остающихся от переработки руд. О способности микроорганизмов накапливать металлы известно уже давно, и энтузиасты издавна мечтали об использовании микробов для получения ценных металлов из морской воды. Проведенные исследования рассеяли некоторые надежды и в значительной степени определили области применения микроорганизмов. Извлечение металлов при их участии остается многообещающим способом дешевой обработки загрязненных металлами промышленных стоков, а также экономичного получения ценных металлов.

Давно известно и о способности микроорганизмов синтезировать полимерные соединения; в самом деле, большинство компонентов клетки - это полимеры. Однако на сегодняшний день менее 1% всего количества полимерных материалов производит микробиологическая промышленность; остальные 99% получают из нефти. Пока биотехнология не оказала решающего влияния на технологию полимеров. Возможно, в будущем с помощью микроорганизмов удастся создавать новые материалы специального назначения.

Следует отметить еще один важный аспект применения микроорганизмов в химическом анализе - концентрирование и выделение микроэлементов из разбавленных растворов. Потребляя и усваивая микроэлементы в процессе жизнедеятельности, микроорганизмы могут селективно накапливать некоторые из них в своих клетках, очищая при этом питательные растворы от примесей. Например, плесневые грибы применяют для избирательного осаждения золота из хлоридных растворов.

Современные сферы применения

Микробная биомасса используется как корм скоту. Микробная биомасса некоторых культур используется в виде разнообразных заквасок, которые применяются в пищевой промышленности. Так приготовлении хлеба, пива, вин, спирта, уксуса, кисломолочных продуктов сыров и многих продуктов. Другое важное направление-это использование продуктов жизнедеятельности микроорганизмов. Продукты жизнедеятельности по природе этих веществ и по значимости для продуцента можно разделить на три группы.

1 группа - это крупные молекулы с молекулярной массой. Сюда относятся разнообразные ферменты (липазы и т.д.) и полисахариды. Использование их чрезвычайно широка - от пищевой и текстильной промышленности до нефтедобывающей.

2 группа - это первичные метаноболиты, к которым относится вещества, необходимые для роста и развития самой клетки: аминокислоты, органические кислоты, витамины и другие.

3 группа - вторичные метаноболиты. К ним относится: антибиотики, токсины, алкалоиды, факторы роста и др. Важное направление биотехнологии - использовании микроорганизмов как биотехнических агентов для превращения или трансформации некоторых веществ, очистки вод, почв или воздуха от загрязнителей. Также в добыче нефти микроорганизмы играют важную роль. Традиционным способом из нефтяного пласта извлекается не более 50% нефти. Продукты жизнедеятельности бактерий, накапливая в пласте, способствуют вытеснения нефти и более полному выходу её на поверхность.

Огромная роль микроорганизмов в создании поддержании и сохранении почвенного плодородия. Они принимают в участии в образовании почвенного перегноя - гумуса. Применяются в повышении урожайности сельскохозяйственных культур.

В последние годы началось развиваться ещё одно принципиально новое направление биотехнологии - бесклеточная биотехнология.

Селекция микроорганизмов основана на том, что микроорганизмы приносят огромную пользу в промышленности, в сельском хозяйстве, в животном и растительном мире.

Другие сферы применения

В медицине

Традиционные методы производства вакцин основаны на применении ослабленных или убитых возбудителей. В настоящее время многие новые вакцины (например, для профилактики гриппа, гепатита В) получают методами генной инженерии. Противовирусные вакцины получают, внося в микробную клетку гены вирусных белков, проявляющих наибольшую иммуногенность. При культивировании такие клетки синтезируют большое количество вирусных белков, включаемых впоследствии в состав вакцинных препаратов. Более эффективно производство вирусных белков в культурах клеток животных на основе технологии рекомбинантных ДНК.

В нефтедобыче:

В последние годы получают развитие методы увеличения нефтеотдачи с применением микроорганизмов. Их перспектива связана, в первую очередь, с простотой реализации, минимальной капиталоемкостью и экологической безопасностью. В 1940 - х годах во многих нефтедобывающих странах были начаты исследования по применению микроорганизмов для интенсификации притока в добывающих скважинах и восстановления приемистости нагнетательных скважин.

В пищевой и хим. промышленности:

К наиболее известным промышленным продуктам микробного синтеза относятся: ацетон, спирты (этанол, бутанол, изопропанол, глицерин), органические кислоты (лимонная, уксусная, молочная, глюконовая, итаконовая, пропионовая), ароматизаторы и вещества, усиливающие запахи (глутамат натрия). Спрос на последние постоянно увеличивается из-за тенденции к употреблению малокалорийной и растительной пищи, для придания вкусу и запаху пищи разнообразия. Ароматические вещества растительного происхождения можно производить путём экспрессии генов растений в клетках микроорганизмов.



Разнообразие микроорганизмов. Биотехнология молочных продуктов. Экологическая биотехнология.

Микробиологический синтез различных веществ играет ключевую роль в биотехнологическом производстве. Начало современной промышленной микробиологии было положено в 40 – х годах, когда наладили производство пенициллинов методами ферментации. В настоящее время микроорганизмы продуцируют десятки видов соединений - аминокислот, антибиотиков, белков, витаминов, липидов, нуклеиновых кислот, полисахаридов, пигментов, сахаров, ферментов и т. д.

К многообразному миру микроорганизмов относятся прокариоты (одноклеточные организмы, не содержащие оформленных ядер) - бактерии, актиномицеты, риккетсии низшие эукариоты (одноклеточные и многоклеточные организмы, имеющие сформированные ядра, в которых хромосомы окружены специальной пористой мембраной (липопротеидной природы), - дрожжи, нитчатые грибы, простейшие и водоросли. Из более 100 тыс. видов известных в природе микроорганизмов в биотехнологических процессах используют всего несколько сотен. Микробиологическая промышленность предъявляет к продуцентам жесткие требования, которые важны для технологии производства: высокая скорость роста, использование для жизнедеятельности дешевых субстратов и Устойчивость к заражению посторонней микрофлорой.

Биотехнология молочных продуктов .

Спектр продуктов питания, получаемых при помощи микроорганизмов обширен. Это продукты, получаемые в результате брожения - хлеб, сыр, вино, пиво, творог и так далее. До недавнего времени биотехнология использовалась в пищевой промышленности с целью усовершенствования освоенных процессов и более умелого использования микроорганизмов, но будущее здесь принадлежит генетическим исследованиям по созданию более продуктивных штаммов для конкретных нужд, внедрению новых методов в технологии брожения

Получение молочных продуктов в пищевой промышленности построена процессах ферментации. Основой биотехнологии молочных продуктов является молоко. Молоко (секрет молочных желез) – уникальная естественная питательная среда. Она содержит 82 – 88 % воды и 12 – 18 % сухого остатка. В состав сухого молочного остатка входят белки (3,0 - 3,2 %), жиры (3,3 - 6,0 %), углеводы (молочный сахар лактоза - 4,7 %), соли (0,9 – 1 %), минорные компоненты (0,01 %): ферменты, иммуноглобулины, лизоцим и т. д. Молочные жиры очень разнообразны по своему составу. Основные белки молока - альбумин, казеин. Благодаря такому составу молоко представляет собой прекрасный субстрат для развития микроорганизмов. В сквашивании молока обычно принимают участие стрептококки и молочнокислые бактерии . Путем использования реакций, которые сопутствуют главному процессу сбраживания лактозы получают и другие продукты переработки молока: сметаны, йогурт, сыр и т. д. Свойства конечного продукта зависят от характера и интенсивности реакций ферментации. Те реакции, которые сопутствуют образованию молочной кислоты, определяют обычно особые свойства продуктов. Например, вторичные реакции ферментации, идущие при созревании сыров, определяют вкус отдельных их сортов. В таких реакциях принимают участие пептиды, аминокислоты и жирные кислоты, находящиеся в молоке.



Микрозим. Экологическая биотехнология .

В природе, не подвергающейся вмешательству человека, экосистема настроена на самоочищение, т. е. природа сама справляется с переработкой более не нужного ей (мертвого) органического материала. В утилизации органики участвует почва, содержащая естественную биоту (микроорганизмы, эдафон) – живой компонент, представленный разнообразными представителями растительного и животного мира. В одном грамме садовой почвы содержатся десятки миллионов микроорганизмов - сапрофитов, актеномицетов , грибков, олигонитрофилов, азотобактеров и клубеньковых бактерий, бактерий разлагающих клетчатку, аммонификаторов, нитрификаторов, денитрификаторов, анаэробных фиксаторов азота. Вместе микроорганизмы составляют микрофлору почвы отвечающую за метаболизм в результате которого мертвая органика перерабатывется в плодородный гумус. Деятельность человека оказывает на окружающую среду мощное техногенное воздействие в частности загрязнением почвы и воды отходами производств и жизнедеятельности, где значительную долю занимают органические загрязнители. В результате загрязнений почвы и воды органическими веществами подавляется естественная биота, меняются соотношения между отдельными группами микроорганизмов и в целом изменяется направление метаболизма, нарушаются естественные процессы самоочищения. В районах постоянных загрязнений почвенная микрофлора в субстратах загрязнителях насчитывает, не более нескольких тысяч КОЕ на 100 граммов субстрата, одни группы микроорганизмов сохраняют присутствие, в то время как количество других критически уменьшается, нарушаются процессы почвообразования, в почве и воде накапливаются не разлагаемые отходы. В загрязненной экосистеме с подавленной полезной микрофлорой развиваются вредные и патогенные микроорганизмы – в водоемах загрязненных питательными элементами азота и фосфора стремительно развиваются опасные для экологии водоема сине – зеленые водоросли вызывающие отравление воды и заморы. Техногенные и антропогенные нарушения экологического баланса изменяют санитарное состояние в месте их образования, ухудшают условия обитания людей.



Разработка наиболее рациональных приемов использования микробов в хозяйственной деятельности человека и сознательная селекция микробов стали возможны только после разработки микроскопических методов изучения и выяснения способов расселения и размножения микроорганизмов. Пути возникновения микробов с повышенной устойчивостью или с пониженными требованиями к питательным веществам как в природных условиях под влиянием естественного отбора, так и в искусственных условиях в результате деятельности селекционеров, имеют очень важное практическое значение. Человек заинтересован получить как можно быстрее полезные формы микробов. Интенсивность естественного отбора сильно влияет на быстроту появления устойчивых форм и чем более жесток этот отбор, тем быстрее выявляются устойчивые формы. При помощи ступенчатой селекции получают новые штаммы микроорганизмов, способные расти и давать высокую продуктивность в условиях экологического загрязнения. Новые высокоэффективные штаммы могут выделяться из окружающей среды, например из естественных и техногенных биотопов, загрязненных территорий и очистных сооружений, а также получаться путем направленной селекции.

Многие экологически опасные загрязнители представляют собой сложные органические вещества. Для их переработки микроорганизмы синтезируют во внешнюю среду ферменты – особые белковые биоактивные вещества, выполняющие ключевую роль в разрушении сложных органических субстратов: целлюлозы, лигнина, крахмалов, липидов, углеводородов, до простых молекулярных структур, свободно поглощаемых и минерализуемых бактериями или другими микроорганизмами, например, грибами. Биотехнология использует эту способность микроорганизмов и бактерий в частности в применении к конкретным экологическим задачам.

Использование микроскопических почвенных обитателей для биологической утилизации органических отходов и нейтрализации загрязнителей получила название биоремедиации (bio - жизнь, remedio - лечение). В очищаемую среду или в утилизируемые отходы вносятся высокие концентрации специально отобранных различных видов микроорганизмов, составляющих сообщество, которые ранее были выделены из почвы, селекционированы и размножены в форме готового к применению препарата.

В результате в нужном месте в нужное время целенаправленно создается полезная микробиологическая активность заключенная в усвоении и переработке микробами мертвой органики в продукты метаболизма: углекислый газ (диоксид углерода, СО2), воду (H2O), метан (СH4), гумус, различные формы азота (от минеральной до газообразной). Подобные меры позволяют с высокой эффективностью нейтрализовать угнетающее действие загрязнителей на естественные процессы самоочищения почвы и воды, стимулировать микробиологический метаболизм, активизировать соответствующую аборигенную микрофлору и естественные процессы cамоочищения, почвообразования, дыхания.

К преимуществам биоремедиации относят возможность целенаправленного и дозированного применения технологии в нужном месте в нужное время, достаточно высокая скорость и экологически существенная эффективность усвоения и переработки микроорганизмами органических отходов и загрязнений, технологически заданные характеристики процессов очистки или переработки, экологическая и гигиеническая безопасность. Например, биологическая очистка сточных вод использует биотехнологию в тех случаях когда определенные содержащиеся в стоках вещества не поддаются биологической деградации хлопьями активного ила.

Тогда на помощь приходят специально отобранные микроорганизмы способные эффективно разрушать сложный загрязнитель, например жиры, полимеры, до молекулярных структур не вредящих активному илу очистных сооружений.

Биоремедиация – биологическая очистка почвы и воды от загрязнения нефтью и нефтепродуктами основана на способности микроорганизмов постепенно метаболизировать сложные нефтяные углеводороды с получением более простых молекулярных углеводородных структур до их полной нейтрализации как экологически опасного загрязнителя.

Утилизация и обезвреживание фекалий , очистка хозфекальных стоков основаны на способности микроорганизмов метаболизировать органические вещества входящие в состав фекалий и подавлять рост патогенной микрофлоры за счет конкуренции за источник питания. Уничтожение запахов, эффект деодоризации основан сразу на нескольких способностях бактерий метаболизировать пахнущие летучие органические соединения или предотвращать их образование, метаболизировать жирные кислоты.

Получение газа метан (биогаз) из органических отходов напрямую зависит от жизнедеятельности метаногенных микроорганизмов. Биотехнология при этом тесно взаимодействует с экологическим инжинирингом. Например, биологическая реабилитация водных объектов in situ (рассмотрение явления именно в месте, где оно происходит, то есть без перемещения в спец.среду) основана на теории практике роли сообществ бактерий и микроорганизмов в целом биологической экосистемы водоема, трофических взаимосвязей водной экосистемы.

Производство микроорганизмов

Микроорганизмы в производстве питательных белковых веществ

Микроорганизмы помогают людям в производстве эффективных питательных белковых веществ и биологического газа. Их используют при применении биотехнических методов очистки воздуха и сточных вод, при использовании биологических методов уничтожения сельскохозяйственных вредителей, при получении лечебных препаратов, при уничтожении утильсырья. Бактерии, грибы, водоросли, лишайники, вирусы, простейшие в жизни людей играют значительную роль. С давних времен люди использовали их в процессах хлебопечения, приготовления вина и пива, в различных производствах. В настоящее время в связи с проблемами получения ценных белковых веществ, увеличения плодородия почв, очищения окружающей среды от загрязнителей, получения биопрепаратов и другими целями и задачами диапазон изучения и использования микроорганизмов значительно расширился.

Микроорганизмы в производстве пищевых продуктов

Многие микроорганизмы, в том числе дрожжеподобные и некоторые виды микроскопических грибов, издавна использовались при превращении различных субстратов для получения различных видов пищевых продуктов. Например, использование дрожжей для получения из муки пористого хлеба, использование грибов родов Rhisopus, Aspergillus для ферментации риса и сои, получение молочно - кислых продуктов с помощью молочно - кислых бактерий, дрожжей и др.

Ауксотрофные мутанты Candida guillermondii используются для изучения флавиногенеза. Гифальные грибы хорошо усваивают углероды нефти, парафина, n- гекасдекана, дизельного топлива.

Для разной степени очистки этих веществ используются виды родов Mucorales, Penicillium, Fusarium, Trichoderma.

Для утилизации жирных кислот используются штаммы Penicillium, а жирные вторичные спирты лучше перерабатываются в присутствии штаммов Penicillium и Trichoderma.Виды грибов Aspergillus, Absidia, Cunningham, Ella, Fusarium, Mortierella, Micor, Penicillium, Trichoderma, Periconia, Spicaria используются при утилизации парафинов, парафинового масла, дизельного топлива, ароматических углеводородов, многоатомных спиртов, жирных кислот.Penicillium vitale используется для получения очищенного препарата глюкозооксидазы, ингибирующего развитие патогенных дерматомицетов Microsporum lanosum, Achorion gypseum, Trichophyton gypseum, Epidermophyton kaufman.

Промышленное использование микроорганизмов для получения новых пищевых продуктов способствовало созданию таких видов промышленности как хлебопекарская и молочная, производство антибиотиков, витаминов, аминокислот, спиртов, органических кислот и пр.

Микробиологические процессы широко применяют в различных отраслях народного хозяйства. В основе многих процессов лежат реакции обмена веществ, происходящих при росте и размножении некоторых микроорганизмов.

С помощью микроорганизмов производят кормовые белки, ферменты, витамины, аминокислоты, органические кислоты и т.д.

Основные группы микроорганизмов, используемых в пищевой промышленности

Основные группы микроорганизмов, используемых в отраслях пищевой промышленности, - бактерии, дрожжевые и плесневые грибы.

Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого, ацетонобутилового брожения.

Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, иногда в спиртовом производстве. Они превращают сахар в молочную кислоту по уравнению

C 6 H 12 O 6 ® 2CH 3 – CH – COOH + 75 кДж

В производстве ржаного хлеба участвуют истинные (гомоферментативные) и неистинные (гетероферментативные) молочнокислые бактерии. Гомоферментативные участвуют только в кислотообразовании, а гетероферментативные, наряду с молочной кислотой, образуют летучие кислоты (в основном уксусную), спирт и диоксид углерода.

В спиртовой промышленности молочнокислое брожение применяется для подкисления дрожжевого сусла. Дикие молочнокислые бактерии неблагоприятно влияют на технологические процессы бродильных производств, ухудшают качество готовой продукции. Образующаяся молочная кислота подавляет жизнедеятельность посторонних микроорганизмов.

Маслянокислое брожение, вызываемое маслянокислыми бактериями, используют для производства масляной кислоты, эфиры которой применяют в качестве ароматических веществ.

Маслянокислые бактерии превращают сахар в масляную кислоту по уравнению

C 6 H 12 O 6 ® CH 3 CH 2 CH 2 COOH + 2CO 2 + H 2 + Q

Уксуснокислые бактерии используют для получения уксуса (раствора уксусной кислоты), т.к. они способны окислять этиловый спирт в уксусную кислоту по уравнению

C 2 H 5 OH + O 2 ® CH 3 COOH + H 2 O +487 кДж



Уксуснокислое брожение является вредным для спиртового производства, т.к. приводит к снижению выхода спирта, а в пивоварении вызывает порчу пива.

Дрожжи. Применяются в качестве возбудителей брожения при получении спирта и пива, в виноделии, в производстве хлебного кваса, в хлебопечении.

Для пищевых производств имеют значение дрожжи – сахаромицеты, которые образуют споры, и несовершенные дрожжи – несахаромицеты (дрожжеподобные грибы), не образующие спор. Семейство сахаромицетов делится на несколько родов. Наиболее важное значение имеет род Saccharomyces (сахаромицеты). Род подразделяется на виды, а отдельные разновидности вида называют расами. В каждой отрасли применяют отдельные расы дрожжей. Различают дрожжи пылевидные и хлопьевидные. У пылевидных клетки изолированы друг от друга, а у хлопьевидных клетки склеиваются между собой, образуя хлопья, и быстро оседают.

Культурные дрожжи относятся к семейству сахаромицетов S. сerevisiae. Температурный оптимум для размножения дрожжей 25-30 0 С, а минимальная температура около 2-3 0 С. При 40 0 С рост прекращается, дрожжи отмирают, при низких температурах размножение приостанавливается.

Различают дрожжи верхового и низового брожения.

Из культурных дрожжей к дрожжам низового брожения относят большинство винных и пивных дрожжей, а к дрожжам верхового брожения – спиртовые, хлебопекарные и некоторые расы пивных дрожжей.

Как известно, в процессе спиртового брожения из глюкозы образуется два основных продукта – этанол и диоксид углерода, а также промежуточные вторичные продукты: глицерин, янтарная, уксусная и пировиноградная кислоты, ацетальдегид, 2,3-бутиленгликоль, ацетоин, эфиры и сивушные масла (изоамиловый, изопропиловый, бутиловый и другие спирты).

Сбраживание отдельных сахаров происходит в определенной последовательности, обусловленной скоростью их диффузии в дрожжевую клетку. Быстрее всего сбраживаются дрожжами глюкоза и фруктоза. Сахароза, как таковая, исчезает (инвертируется) в среде еще в начале брожения под действием фермента дрожжей b - фруктофуранозидазы, с образованием глюкозы и фруктозы, которые легко используются клеткой. Когда в среде не остается глюкозы и фруктозы, дрожжи потребляют мальтозу.

Дрожжи обладают способностью сбраживать весьма высокие концентрации сахара – до 60 %, они выносят также высокие концентрации спирта – до 14-16 об. %.

В присутствии кислорода спиртовое брожение прекращается и дрожжи получают энергию за счет кислородного дыхания:

C 6 H 12 O 6 + 6O 2 ® 6CO 2 + 6H 2 O + 2824 кДж

Так как процесс более энергетически богат, чем процесс брожения (118 кДж), то дрожжи тратят сахар значительно экономнее. Прекращение брожения под действием кислорода воздуха называют эффектом Пастера.

В спиртовом производстве применяют верховые дрожжи вида S. сerevisiae, которые обладают наибольшей энергией брожения, образуют максимум спирта и сбраживают моно- и дисахариды, а также часть декстринов.

В хлебопекарных дрожжах ценят быстроразмножающиеся расы, обладающие хорошей подъемной силой и стойкостью при хранении.

В пивоварении используют дрожжи низового брожения, приспособленные к сравнительно низким температурам. Они должны быть микробиологически чистыми, обладать способностью к хлопьеобразованию, быстро оседать на дно бродильного аппарата. Температура брожения 6-8 0 С.

В виноделии ценят дрожжи, быстро размножающиеся, обладающие свойством подавлять другие виды дрожжей и микроорганизмы и придавать вину соответствующий букет. Дрожжи, применяемые в виноделии, относятся к виду S. vini, энергично сбраживают глюкозу, фруктозу, сахарозу и мальтозу. В виноделии почти все производственные культуры дрожжей выделены из молодых вин в различных местностях.

Зигомицеты – плесневые грибы, они играют большую роль в качестве продуцентов ферментов. Грибы рода Aspergillus продуцируют амилолитические, пектолитические и другие ферменты, которые используют в спиртовой промышленности вместо солода для осахаривания крахмала, в пивоварении при частичной замене солода несоложеным сырьем и т.д.

В производстве лимонной кислоты А. niger является возбудителем лимоннокислого брожения, превращая сахар в лимонную кислоту.

Микроорганизмы в пищевой промышленности играют двоякую роль. С одной стороны, это культурные микроорганизмы, с другой - в пищевые производства попадает инфекция, т.е. посторонние (дикие) микроорганизмы. Дикие микроорганизмы распространены в природе (на ягодах, плодах, в воздухе, воде, почве) и из окружающей среды попадают в производство.

Для соблюдения правильного санитарно-гигиенического режима на пищевых предприятиях эффективным способом уничтожения и подавления развития посторонних микроорганизмов является дезинфекция.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!